

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

	::: callingcardstools.Alignment.AlignmentTagger
	handler: python
selection:

inherited_members: true

	::: callingcardstools.Alignment.SummaryParser
	handler: python
selection:

inherited_members: true

	::: callingcardstools.Alignment.mammals.Qbed
	handler: python
selection:

inherited_members: true

	::: callingcardstools.BarcodeParser.BarcodeParser
	handler: python
selection:

inherited_members: true

	::: callingcardstools.BarcodeParser.mammals.BarcodeQcCounter
	handler: python
selection:

inherited_members: true

	::: callingcardstools.BarcodeParser.yeast.BarcodeQcCounter
	handler: python
selection:

inherited_members: true

	::: callingcardstools.QC.StatusFlags
	handler: python
selection:

inherited_members: true

	::: callingcardstools.QC.create_status_coder
	handler: python
selection:

inherited_members: true

	::: callingcardstools.Reads.ReadParser.ReadParser
	handler: python
selection:

inherited_members: true

	::: callingcardstools.Resources.Resources.Resources
	handler: python
selection:

inherited_members: true

 # Barcode Details Json

The Barcode Details Json provides callingCardsTools with information about
what and where to expect non-genomic sequence which are included in the raw
reads and serve to both demultiplex, in the case of yeast data, and confirm
that a given read represents a transposon insertion.

The mammals data barcode details is generally static – you can use the same
barcode details for all data. However, the yeast barcode details must be
adjusted for each specific library.

Yeast Barcode Details Format

It is most convenient to store the TF barcode sequences as a tsv and then
use the cmd line tool callingcardstools barcode_table_to_json to convert
the table to the appropriate json template.

Save a tsv in the following format:
Do not include a header

| | |

-------------	——-	----------
MTH1	GTCCC	CAGAGGGG
SKN7	TCAAG	ATCAGACC
HAP3	AATGA	GGGGGTAG

The output of

`bash
callingcardstools barcode_table_to_json -t run_6354_bc_table.tsv -r run_6354
`

will be a json in the following format:

```json
{



	“r1”: {
	
	“primer”: {
	“trim”: true,
“index”: [


0,
5




]





},
“transposon”: {


“trim”: true,
“index”: [


5,
22




]




}





},
“r2”: {



	“transposon”: {
	“trim”: true,
“index”: [


0,
8




]





},
“restriction”: {


“trim”: true,
“index”: [


8,
20




]




}




},
“components”: {



	“r1_transposon”: {
	
	“map”: [
	“AATTCACTACGTCAACA”





],
“bam_tag”: “RT”





},
“r2_restriction”: {



	“map”: {
	“TCGAGCGCCCGG”: “Hpall”,
“TCGAGCGC”: “HinP1I”,
“TCGA”: “TaqAI”





},
“match_type”: “greedy”,
“require”: false,
“bam_tag”: “RS”




},
“tf”: {



	“components”: [
	“r1_primer”,
“r2_transposon”





],
“map”: {


“GTCCCCAGAGGGG”: “MTH1”,
“TCAAGATCAGACC”: “SKN7”,
“AATGAGGGGGTAG”: “HAP4”




},
“bam_tag”: “TF”




}




},
“match_allowance”: {


“r1_transposon”: 0




},
“batch”: “run_6354”





}

## Mammals Barcode Details Format

Since this will generally be the same for all mammals Calling Cards data, you
can likely simply copy and paste this onto your system and use it directly:

```json
{

“batch”: “”,
“tf”: “”,
“r1”: {

	“pb”: {“trim”: true,
	“index”: [0,3]},

	“lrt1”: {“trim”: true,
	“index”: [3,28]},

	“srt”: {“trim”: true,
	“index”:[28,32]},

	“lrt2”: {“trim”: true,
	“index”: [32,38]}

},
“r2”:{},
“components”: {

	“r1_pb”: {“map”:[“TAG”],
	“match_allowance”: 0,
“bam_tag”: “PB”},

	“r1_lrt1”: {“map”: [“CGTCAATTTTACGCAGACTATCTTT”],
	“match_type”: “edit_distance”,
“match_allowance”: 0,
“require”: true,
“bam_tag”: “L1”},

	“r1_srt”: {“map”: [“CTAG”, “CAAC”, “CTGA”, “GCAT”, “GTAC”, “CACA”, “TGAC”, “GTCA”,
	
“CGAT”, “CTCT”, “GAAG”, “TCGA”, “CATG”, “GTTG”, “CTTC”, “GCTA”,
“GAGA”, “GTGT”, “CGTA”, “TGGT”, “GGAA”, “ACAC”, “TCAG”, “TTGG”,
“CAGT”, “TTTT”],

“match_type”: “edit_distance”,
“match_allowance”: 0,
“require”: true,
“bam_tag”: “ST”,
“annotation”: true},

	“r1_lrt2”: {“map”: [“GGTTAA”],
	“match_type”: “edit_distance”,
“match_allowance”: 0,
“require”: true,
“bam_tag”: “L2”}

},
“insert_seq”: [“TTAA”],
“max_mismatch”: 0

}

 # qBed

qBed files are 0 indexed, half open with the following fields:

‘chr’, ‘start’, ‘end’, ‘depth’, ‘strand’, ‘annotation’

Where the first three fields are required. See the following paper for a fuller
definition, along with examples:

[qBed Format](https://academic.oup.com/bioinformatics/article/37/8/1168/5907909?login=false)

 # Change Log
—

Upgrading

To upgrade callingCardsTools to the latest stable release, use pip:

`bash
pip install -U callingcardstools
`

The development version may be installed from the repository:

(instructions here)

Version 1.0.0

Version 0.0.0

	Initial release

 # Contributing

Contributions are welcome, and they are greatly appreciated!
Every little bit helps, and credit will always be given.

Environment setup

Nothing easier!

Fork and clone the repository, then:

`bash
cd python
make setup
`

> NOTE:
> If it fails for some reason,
> you’ll need to install
> [PDM](https://github.com/pdm-project/pdm)
> manually.
>
> You can install it with:
>
> `bash
> python3 -m pip install --user pipx
> pipx install pdm
> `
>
> Now you can try running make setup again,
> or simply pdm install.

You now have the dependencies installed.

You can run the application with pdm run mkdocstrings-python [ARGS…].

Run make help to see all the available actions!

Tasks

This project uses [duty](https://github.com/pawamoy/duty) to run tasks.
A Makefile is also provided. The Makefile will try to run certain tasks
on multiple Python versions. If for some reason you don’t want to run the task
on multiple Python versions, you can do one of the following:

	`export PYTHON_VERSIONS= `: this will run the task
with only the current Python version

	run the task directly with pdm run duty TASK

The Makefile detects if a virtual environment is activated,
so make will work the same with the virtualenv activated or not.

Development

As usual:

1. create a new branch: git checkout -b feature-or-bugfix-name
1. edit the code and/or the documentation

Before committing:

1. run make format to auto-format the code
1. run make check to check everything (fix any warning)
1. run make test to run the tests (fix any issue)
1. if you updated the documentation or the project dependencies:

1. run make docs-serve
1. go to http://localhost:8000 and check that everything looks good

	follow our [commit message convention](#commit-message-convention)

If you are unsure about how to fix or ignore a warning,
just let the continuous integration fail,
and we will help you during review.

Don’t bother updating the changelog, we will take care of this.

Commit message convention

Commits messages must follow the
[Angular style](https://gist.github.com/stephenparish/9941e89d80e2bc58a153#format-of-the-commit-message):

```
<type>[(scope)]: Subject

[Body]
```

Scope and body are optional. Type can be:

	build: About packaging, building wheels, etc.

	chore: About packaging or repo/files management.

	ci: About Continuous Integration.

	docs: About documentation.

	feat: New feature.

	fix: Bug fix.

	perf: About performance.

	refactor: Changes which are not features nor bug fixes.

	style: A change in code style/format.

	tests: About tests.

Subject (and body) must be valid Markdown.
If you write a body, please add issues references at the end:

```
Body.

References: #10, #11.
Fixes #15.
```

Pull requests guidelines

Link to any related issue in the Pull Request message.

During review, we recommend using fixups:

`bash
SHA is the SHA of the commit you want to fix
git commit --fixup=SHA
`

Once all the changes are approved, you can squash your commits:

`bash
git rebase -i --autosquash master
`

And force-push:

`bash
git push -f
`

If this seems all too complicated, you can push or force-push each new commit,
and we will squash them ourselves if needed, before merging.

Using tests to make debugging __easy__ and __reproducible__

What I am going to describe has some name – test first development or some such.
I don’t know what it is called, and I don’t care to have a debate about whether
or not it is “good” or “an effective part of the development cycle”. These are
discussions that happen, apparently, among the “developer community”, and to the
extent that the discussion is interesting, the setting in which they are occuring
are not academic labs. In other words, if you’re tempted to call what I am about
to describe as “test first development”, please set that out of your mind.

Tests as debugging tools

I am not suggesting that you write tests that prove that your code is correct,
nor am I suggesting that you need a certain “test coverage”. I am suggesting that
you use the tools available in your IDE and the language to make writing easier.
You will be debugging your code, one way or another. If you do so in a test
environment, then your debugging will be both __easier__ and __reproducible__.
Why does __reproducible__ matter? It makes it easier to change/update/improve
your code in the future, and it helps someone else understand what your code
does without you telling them.

Using tests as writing aids

First, think

Start by thinking about what you want to write. I do this on paper.

Write a skeleton

This is an example of a class, but this could also be a set of functions.

Get some test data

This doesn’t have to be perfect. It is something that can be iteratively improved.
Do be careful about adding/committing large files to git, though – subset them
down before adding.

If you can, in the test, write what you expect to get out of your function

But this can be really hard – what if you don’t know what you are doing yet?
I am frequently in this position. Best practice would probably be to go back
to the paper and figure it out, but frequently it is easiest to have an interactive
environment to play with the data.

Write a “dummy test”, write some code into your function and set a break point

Now you can get into the class/function namespace and start exploring, interactively,
while you write. You can go back and forth between writing the class/function
and the test, refining both as you go.

But writing a test increases the number of lines that I have to write

That’s true, although likely not by much. But, what you have gained is an
interactive and reproducible debugging and development environment.
Not only that, anyone else who might want to use your code can do the same.
It is much easier to have ready made functions (the tests) which bring in some
data and run your code in a way that allows another person to set a breakpoint
and take a look around at what your doing. Tests are not specification, and
they don’t take the place of comments and documentation. They don’t “prove”
that your code is right necessarily, and you don’t need to spend a ton of time
coming up with all of the edge cases, etc. The are __tools__ – they are better
than print statements for debugging, and they are reproducible in both your
hands, and the hands of others.

Cite
This is based on the [mkdocstrings](https://github.com/mkdocstrings/python/blob/master/CONTRIBUTING.md) contribution policy

FreeBSD License

Copyright (c) 2022, Chase Mateusiak Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 # Tests are reproducible debugging tools!

There is a test suite provided with this package which is intended to give
any future Calling Cards developers who might use this an easier way into the
code. All code should be accessible from the current tests, and the current
tests can be used to give some assurance that a new change doesn’t absolutely
break any functionality.

__However__, the purpose of the tests is not to prove correctness. Rather,
it is a record of the debugging that I have done. It makes the debugging
reproducible!

The real benefit to me in the future, or you, if you have inherited this,
is that you can use VScode to set breakpoints in the code. This means you
don’t have to read my documentation or guess at what I was trying to do.

Here is an example:

![debugging_example](../assets/debug_allows_interaction.png)

What you’re seeing here is a a dummy test on the right. Notice that this
test does nothing! it just says that 2 == 2. However, it is importing
a _fixture_. A fixture is a test data object – in this case, it is a
SummaryParser object that is loaded from test data that is provided in the
package repository.

Notice that I have set a breakpoint on the SummaryParser() constructor. This
isn’t necessarily the most direct way or setting up this test, but it provides
an example of both a fixture, and proves that tests don’t need to actually
test anything at all to be useful.

Why is this useful? Because now you can “step into” the SummaryParser
constructor. When I wrote the constructor, I needed to make sure that it
actually constructs. We do that by trying it out. Because I have provided this
“test”, you can re-run that debugging process as many times as you wan to. You
don’t need to read the documentation on what the SummaryParser() is supposed
to do – just set a breakpoint and run the test – the execution will stop at
the breakpoint and you’ll be in an interactive coding environment.

By doing this, as a developer, you can interatively improve the tests over
time. As you debug, upon first writing or at any point in the future when you
are debugging, just keep a record (that is the iteratively improved test).
For example, maybe you write a more robust test of the constructor:

![a more robust test](../assets/constructor_test_after_interaction.png)

As you write the rest of the class, you’ll want to make sure that you’re
including tests. At the _very very_ least, provide the names of the tests:

![names of tests](../assets/preparing_to_write_the_rest.png)

If you’re good, then you’ll write this tests firsts, and then write the
function. But most of us are mere mortals, and will write the functional code
and the tests concurrently. You do this already, most likely – write and test
in an interactive environment, and then copy/paste the working function into
your production environment – the only difference between that, and using the
testing framework, is that by using the testing framework, you’re providing a
resource to yourself-in-the-future, and possibly other developers.

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

